
HJ 7jh
Dumses-Hybrid

How to use and develop it
hj

Tt
JH

Marc Joos

2015, June 19th

This work (apart from the logo, c©CEA & c©ERC) is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

(http://creativecommons.org/licenses/by-nc-sa/4.0/)

19/06/2015 M. Joos Dumses-Hybrid 1/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 2/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 3/18

What’s new in Dumses-Hybrid?

Dumses is still:
I a 3D Eulerian second-order Godunov (magneto)hydrodynamic

simulation code
I in cartesian, cylindrical and spherical coordinates
I with a Vxed grid

But now:
I hybridized with OpenMP
I hybridized with OpenACC (for GPU)
I with parallel I/O
I with a new “user-friendly” conVguration/compilation interface

Get the code:
it is now publicly available on SourceSup:

I git clone git://git.renater.fr/dumses.git

19/06/2015 M. Joos Dumses-Hybrid 4/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 5/18

How to compile and launch the code

Do it in four steps:
I ./configure

I ./make.py

I cp bin/dumses src/problem/your-problem/input $RUNDIR

I [mpirun -np N] ./dumses

And don’t forget to set your local variables:
I export OMP_NUM_THREADS=N

I export ACC_DEVICE_TYPE='nvidia'

19/06/2015 M. Joos Dumses-Hybrid 6/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 7/18

Performances

Test: MRI with no dissipation, 128×128×128
I with PGI compiler
I CPU: Intel SandyBridge
I GPU: NVIDIA K20c

Architecture # MPI th. # OpenMP th. telapsed [s]

dumses_mpi
CPU 1 1 15.7
CPU 4 1 4.1

dumses_hybrid

CPU 1 1 9.4
CPU 1 4 2.9
CPU 4 1 2.6
GPU 1 1 0.81

Dumses-Hybrid vs. Dumses:
I on CPU: 1.7× faster
I on GPU: 20× faster

19/06/2015 M. Joos Dumses-Hybrid 8/18

Performances

Test: MRI with no dissipation, 128×128×128
I with PGI compiler
I CPU: Intel SandyBridge
I GPU: NVIDIA K20c

Architecture # MPI th. # OpenMP th. telapsed [s]

dumses_mpi
CPU 1 1 15.7
CPU 4 1 4.1

dumses_hybrid

CPU 1 1 9.4
CPU 1 4 2.9
CPU 4 1 2.6
GPU 1 1 0.81

Dumses-Hybrid vs. Dumses:
I on CPU: 1.7× faster
I on GPU: 20× faster

19/06/2015 M. Joos Dumses-Hybrid 8/18

Performances

Test: MRI with no dissipation, 128×128×128
I with PGI compiler
I CPU: Intel SandyBridge
I GPU: NVIDIA K20c

Architecture # MPI th. # OpenMP th. telapsed [s]

dumses_mpi
CPU 1 1 15.7
CPU 4 1 4.1

dumses_hybrid

CPU 1 1 9.4
CPU 1 4 2.9
CPU 4 1 2.6
GPU 1 1 0.81

Dumses-Hybrid vs. Dumses:
I on CPU: 1.7× faster
I on GPU: 20× faster

19/06/2015 M. Joos Dumses-Hybrid 8/18

Performances

Test: MRI with no dissipation, 128×128×128
I with PGI compiler
I CPU: Intel SandyBridge
I GPU: NVIDIA K20c

Architecture # MPI th. # OpenMP th. telapsed [s]

dumses_mpi
CPU 1 1 15.7
CPU 4 1 4.1

dumses_hybrid

CPU 1 1 9.4
CPU 1 4 2.9
CPU 4 1 2.6
GPU 1 1 0.81

Dumses-Hybrid vs. Dumses:
I on CPU: 1.7× faster
I on GPU: 20× faster

19/06/2015 M. Joos Dumses-Hybrid 8/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 9/18

How to read’n’visualize your simulation

With Python!
If you use dumpy for the Vrst time:

I cd $DUMSES/utils/dumpy/

I python setup.py install

19/06/2015 M. Joos Dumses-Hybrid 10/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 11/18

Code architecture

Some highlights:
I as a general rule, never touch src/dumses.f90, src/modules/* and

src/subroutines/* Vles. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

I if you develop a new problem, you shouldn’t worry about OpenMP: you can
transparently add your code and it will work (though you won’t get speed-up
due to OpenMP)

I solvers are generated by a home-made Python preprocessor, as well as
subroutine timing – but you’d probably never have to worry about it

19/06/2015 M. Joos Dumses-Hybrid 12/18

Code architecture

Some highlights:
I as a general rule, never touch src/dumses.f90, src/modules/* and

src/subroutines/* Vles. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

I if you develop a new problem, you shouldn’t worry about OpenMP: you can
transparently add your code and it will work (though you won’t get speed-up
due to OpenMP)

I solvers are generated by a home-made Python preprocessor, as well as
subroutine timing – but you’d probably never have to worry about it

1 !$OMP PARALLEL DO SCHEDULE(RUNTIME)

2 do k=1, khi
3 do j=1, jhi+1
4 do i=1, ihi+1
5 uin(i,j,k,iA) = uin(i,j,k,iA) &
6 + (emfz(i,j+1,k) - emfz(i,j,k))/dy
7 uin(i,j,k,iB) = uin(i,j,k,iB) &
8 - (emfz(i+1,j,k) - emfz(i,j,k))/dx
9 end do
10 end do
11 end do
12 !$OMP END PARALLEL DO

19/06/2015 M. Joos Dumses-Hybrid 12/18

Code architecture

Some highlights:
I as a general rule, never touch src/dumses.f90, src/modules/* and

src/subroutines/* Vles. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

I if you develop a new problem, you shouldn’t worry about OpenMP: you can
transparently add your code and it will work (though you won’t get speed-up
due to OpenMP)

I solvers are generated by a home-made Python preprocessor, as well as
subroutine timing – but you’d probably never have to worry about it

1 !$py start_timing Timestep

2 call compute_dt(dt)
3 !$py end_timing Timestep

gives:

1 if (verbose) call system_clock(count=t0, count_rate=irate)
2 call compute_dt(dt)
3 if (verbose) then
4 call system_clock(count=t1, count_rate=irate)
5 print '("timestep: ", F12.8, " s")', (t1 - t0)/(irate*1.d0)
6 endif

19/06/2015 M. Joos Dumses-Hybrid 12/18

Hybridation on GPU

Goals:
I extend Dumses capabilities to prepare the future of HPC
I be as little invasive as possible and stay in Fortran

⇒ solution: OpenACC

Strategy:
I à la OpenMP: parallelization of external loops
I tricky point: data transfer to/from the device

1 !$acc data create(emfz)

2 !$acc kernels loop

3 do k=1, khi
4 do j=1, jhi+1
5 do i=1, ihi+1
6 uin(i,j,k,iA) = uin(i,j,k,iA) &
7 + (emfz(i,j+1,k) - emfz(i,j,k))/dy
8 uin(i,j,k,iB) = uin(i,j,k,iB) &
9 - (emfz(i+1,j,k) - emfz(i,j,k))/dx
10 end do
11 end do
12 end do

19/06/2015 M. Joos Dumses-Hybrid 13/18

Development cycle and feedback

Development cycle:
I code refactoring and OpenMP hybridation:

→ ∼ 6 months for the compute core
I OpenACC hybridation:

→ ∼ 6 more months
I more refactoring (no call in parallelized loops)
I Vrst naive step: parallelization following OpenMP: ×0.1 speedup (yep,

that shouldn’t be called a “speedup”)
I second step caring about data transfer: ×10 speedup (on the good days)
I last step of optimization taking care of compute kernels conVguration,

register sizes and so on: ×20 speedup (and that’s solid!)

Feedback:
I debugging is painful

→ tools to dump random variables and manipulate them
I debbuging (and proVling) on GPU is even more painful

I NVIDIA tools (they are cool, but the learning curve is steep)
I PGI tools (proVling, parallelization informations at compile time. . .)

19/06/2015 M. Joos Dumses-Hybrid 14/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 15/18

Tests suite & continuous integration

Suite of tests:
I basic 1D, 2D and 3D tests in all 3 directions in space (shock tube,

Orszag-Tang and so on)
I shearing box and MRI tests
I support MPI, OpenMP, and OpenACC

Jenkins:
I run every night the tests suite on a server, on

monoprocessor, with MPI, OpenMP and
OpenACC

I send email with results in case of success
I send email with log in case of failure

19/06/2015 M. Joos Dumses-Hybrid 16/18

Outline

What’s new in Dumses-Hybrid?

How to compile and launch the code

Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

19/06/2015 M. Joos Dumses-Hybrid 17/18

Documentation

Code documentation with Doxygen
I basic header for every Vle (with a short

description, authors, licenses & dates of
creation/modiVcation)

I short documentation for every subroutines

User manual
I code conVguration, compilation and execution
I detailed input parameters
I visualization
I how to use the tests suite
I how to develop in Dumses-Hybrid
I how to convert output format, including from older version of the

code

19/06/2015 M. Joos Dumses-Hybrid 18/18

