DumsEeEs-HYBRID

How TO USE AND DEVELOP IT

Marc Joos

2015, June 19th

E Irfu
©LEO

This work (apart from the logo, @ CEA & ©ERC) is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

(http://creativecommons.org/licenses/by-nc-sa/4.0/)

mses-Hybrid

Qutline

What’s new in Dumses-Hybrid?

How to compile and launch the code
Performances

How to read’n’visualize your simulation

Code architecture

Tests suite & continuous integration with Jenkins

Documentation

M. Joos Dumses-Hybrid

Qutline

What’s new in Dumses-Hybrid?

M. Joos Dumses-Hybrid

\W hat’s new in Dumses-Hybrid?

DuMses is still:

> a 3D Eulerian second-order Godunov (magneto)hydrodynamic
simulation code

> in cartesian, cylindrical and spherical coordinates

» with a fixed grid

| A\

But now:

hybridized with OpenMP

» hybridized with OpenACC (for GPU)
» with parallel I/0
>

v

with a new “user-friendly” configuration/compilation interface

it is now publicly available on SourceSup:

P git clone git://git.renater.fr/dumses.git

A

M. Joos Dumses-Hybrid

Qutline

How to compile and launch the code

0os Dumses-Hybrid

H ow to compile and launch the code

Do it in four steps:

./configure

v

v

. /make.py
» cp bin/dumses src/problem/your-problem/input $RUNDIR

v

[mpirun -np N] ./dumses

y

And don’t forget to set your local variables:

» export OMP_NUM_THREADS=N
» export ACC_DEVICE_TYPE=’nvidia’

M. Joos Dumses-Hybrid

Qutline

Performances

0os Dumses-Hybrid

Pe rformances

Test: MRI with no dissipation, 128 x128x 128

> with PGI compiler
P CPU: Intel SandyBridge
P GPU: NVIDIA K20c

Architecture # MPlth. # OpenMP th. tejapsed [5]

CPU 1 1 15.7
CPU 4 1 4.1

dumses_mpi

M. Joos Dumses-Hybrid

Pe rformances

Test: MRI with no dissipation, 128 x128x 128

> with PGI compiler
P CPU: Intel SandyBridge
P GPU: NVIDIA K20c

Architecture # MPlth. # OpenMP th. tejapsed [5]
dumses_mpi CPU 1 1
P CPU 4 1
CPU 1 1
_ CPU 1 4 2.9
dumses_hybrid CPU 4 1 2.6

M. Joos Dumses-Hybrid

Pe rformances

Test: MRI with no dissipation, 128 x128x 128

> with PGI compiler
P CPU: Intel SandyBridge
P GPU: NVIDIA K20c

Architecture # MPlth. # OpenMP th. tejapsed [5]
dumses_mpi CPU ! !
CPU 4 1
CPU 1 1
dumses_hybrid 833 3‘ ;1
GPU 1 1

M. Joos Dumses-Hybrid

Pe rformances

Test: MRI with no dissipation, 128 x 128 x 128

> with PGI compiler
P CPU: Intel SandyBridge
P GPU: NVIDIA K20c

Architecture # MPlth. # OpenMP th. tejapsed [5]
dumses_mpi CPU ! !
CPU 4 1
CPU 1 1
dumses_hybrid 21;3 31 ;1
GPU 1 1

Dumses-Hybrid ;' DuMsEs

M. Joos Dumses-Hybrid

Qutline

How to read’n’visualize your simulation

0os Dumses-Hybrid

H ow to read’n’visualize your simulation

If you use dumpy for the first time:
» cd $DUMSES/utils/dumpy/
» python setup.py install

F3 -
% 000 2 102

hatched where < ﬂ)g(p)

M. Joos Dumses-Hybrid

Qutline

Code architecture

M. Joos Dumses-Hybrid

Code architecture

Some highlights:

> as a general rule, never touch src/dumses.£90, src/modules/* and
src/subroutines/#* files. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

M. Joos Dumses-Hybrid

Code architecture

Some highlights:

as a general rule, never touch src/dumses.£90, src/modules/* and
src/subroutines/#* files. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

if you develop a new problem, you shouldn’t worry about OpenMP: you can
transparently add your code and it will work (though you won’t get speed-up
due to OpenMP)

1 !$0MP PARALLEL D0 SCHEDULE(RUNTIHE)
2 do k=1, khi

5 do j=1, jhitl

4 do i=1, ihi+1

5 uin(i,j,k,id) = uin(i,j,k,il) &
6 + (emfz(i,j+1,k) - emfz(i,j,k))/dy
7 uin(i,j,k,iB) = uin(i,j,k,iB) &

8 - (emfz(i+l,j,k) - emfz(i,j,k))/dx
9 end do

10 end do

11 end do

12 !$0MP END PARALLEL DO

M. Joos Dumses-Hybrid

Code architecture

Some highlights:

as a general rule, never touch src/dumses.£90, src/modules/* and
src/subroutines/#* files. If you want to develop on Dumses-Hybrid, just
add your problem in src/problem

if you develop a new problem, you shouldn’t worry about OpenMP: you can
transparently add your code and it will work (though you won’t get speed-up
due to OpenMP)

solvers are generated by a home-made Python preprocessor, as well as
subroutine timing — but you’d probably never have to worry about it

1 !8$py start_timing Timestep
2 call compute_dt(dt)
3 !$py end_timing Timestep

gives:
1 if (verbose) call system_clock(count=t0, count_rate=irate)
2 call compute_dt(dt)
3 if (verbose) then
4 call system_clock(count=t1, count_rate=irate)
5 print ’("timestep: " F12.8, " s")?, (t1 - t0)/(irate*1.d0)
6 endif

M. Joos Dumses-Hybrid

H ybridation on GPU

extend DuMsES capabilities to prepare the future of HPC

be as little invasive as possible and stay in Fortran

= solution: OpenACC

Strategy:

d la OpenMP: parallelization of external loops

tricky point: data transfer to/from the device

!$acc data create(emfz)

1
2 !$acc kernels loop

3 do k=1, khi

4 do j=1, jhi+l

5 do i=1, ihi+1

6 uin(i,j,k,id) = uin(i,j,k,id) &

7 + (emfz(i,j+1,k) - emfz(i,j,k))/dy
8 uin(i,j,k,iB) = uin(i,j,k,iB) &

9 - (emfz(i+l,j,k) - emfz(i,j,k))/dx
10 end do

11 end do

12 end do

M. Joos Dumses-Hybrid

[evelopment cycle and feedback

Development cycle:

> code refactoring and OpenMP hybridation:
— ~ 6 months for the compute core

» OpenACC hybridation:
— ~ 6 more months

» more refactoring (no call in parallelized loops)

> first naive step: parallelization following OpenMP: x0.1 speedup (yep,
that shouldn’t be called a “speedup”)

» second step caring about data transfer: x 10 speedup (on the good days)

» last step of optimization taking care of compute kernels configuration,

register sizes and so on: X20 speedup (and that’s solid!)
v

» debugging is painful
— tools to dump random variables and manipulate them

» debbuging (and profiling) on GPU is even more painful

» NVIDIA tools (they are cool, but the learning curve is steep)
» PGl tools (profiling, parallelization informations at compile time...)

M. Joos Dumses-Hybrid

Qutline

Tests suite & continuous integration with Jenkins

M. Joos Dumses-Hybrid

T ests suite & continuous integration

Suite of tests:
> basic 1D, 2D and 3D tests in all 3 directions in space (shock tube,
Orszag-Tang and so on)

» shearing box and MRI tests
> support MPI, OpenMP, and OpenACC

run every night the tests suite on a server, on

p
H L]
monoprocessor, with MPI, OpenMP and JenklllS

OpenACC
» send email with results in case of success

» send email with log in case of failure

M. Joos Dumses-Hybrid

Qutline

Documentation

0os Dumses-Hybrid

Documentation

Code documentation with Doxygen

> basic header for every file (with a short d
description, authors, licenses & dates of @Xygen
creation/modification)

> short documentation for every subroutines

User manual

> code configuration, compilation and execution

detailed input parameters
visualization
how to use the tests suite

how to develop in Dumses-Hybrid

vV v. v v Y

how to convert output format, including from older version of the
code

M. Joos Dumses-Hybrid

